

LA-UR-20-27181

Approved for public release; distribution is unlimited.

Title: Precision sensing assisted by quantum-classical computation

Author(s): Sone, Akira

Intended for: Seminar for CNLS (Center for Nonlinear Studies) at LANL

Issued: 2020-09-14

Precision sensing assisted by quantum-classical computation

Akira Sone

Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 CNLS, Los Alamos National Laboratory, Los Alamos, NM 87545

Quantum sensing for...

Room-temperature NMR

Magnetic material

Living system (e.g. C. elegance)

Gravitational wave detection

Dark matter

Chemistry, material science, medical science, cosmology...

Practical scenario (not precise, but still interesting...)

Example of practical scenario: Molecular structure determination

The information of molecule is included in the Hamiltonian

Example of practical scenario: Molecular structure determination

We want to extract this information from measurements

Example of practical scenario: Molecular structure determination

Estimation of Hamiltonian parameters:

Linearity of the quantum mechanical dynamics

Estimation of Hamiltonian parameters:

signal

Theoretical model: $i\frac{\partial}{\partial t}\psi = H\psi$

polynomials

$$\Xi(s) = \frac{s^m + g_2(\theta_1, \cdots, \theta_p)s^{m-1} + \cdots}{s^n + g_1(\theta_1, \cdots, \theta_p)s^{n-1} + \cdots}$$

Experimental data:

numbers

$$\Xi_{\text{est}}(s) = \frac{s^m + (a_2)^{m-1} + \cdots}{s^n + (a_1)^{m-1} + \cdots}$$

equal

Estimation of Hamiltonian parameters:

We must have:

$$\Xi(s) = \Xi_{\text{est}}(s)$$

Coefficients of the Laplace variable s in $\Xi(s)$ are polynomials. Coefficients of the Laplace variable s in $\Xi_{\rm est}(s)$ are numbers.

System of polynomial equations

$$\begin{cases} f_1(\theta_1, \cdots, \theta_p) = 0 \\ f_2(\theta_1, \cdots, \theta_p) = 0 \\ f_3(\theta_1, \cdots, \theta_p) = 0 \\ \vdots \\ f_q(\theta_1, \cdots, \theta_p) = 0 \end{cases}$$

Solve the equation directly

Find the parameters

$$\{\theta_1, \theta_2, \cdots, \theta_p\}$$

Precision sensing

Quantify ultimate precision

Quantum Fisher information (QFI):

$$I(\theta; \rho_{\theta}) = 8 \lim_{\epsilon \to 0} \frac{1 - \mathbb{F}[\rho_{\theta}, \rho_{\theta + \epsilon}]}{\epsilon^2}$$

Quantum Cramer-Rao bound:

Fidelity: distance measure of two quantum states

$$\delta heta_{\{\Pi_j\}}^2 \geq \frac{1}{I(\theta; \rho_{\theta})}$$
 Ultimate precision limit

 $\{\Pi_i\}$: set of measurements

Ultimate precision limit (how good the quantum sensor is)

For the optimal measurement $\{\Pi_i^*\}$, the variance satisfies the bound

$$\delta\theta_{\{\Pi_j^*\}}^2 = \delta\theta_{\min} = \frac{1}{I(\theta; \rho_{\theta})}$$

Quantum sensing assisted by a quantum-classical computer

- 1. Computing the lower bound of QFI by using the truncated state constructed with smaller number of eigenvalues
- 2. Feedback control to prepare the good state
- 3. Finding optimal measurement

Quantum sensing assisted by a quantum-classical computer

As increase the size of truncated state, the lower bound is getting closer to the real QFI

FIG. 3. Figure showing lower bound, $J_{m,\delta}$, versus iteration for different m values (number of non-zero eigenvalues kept). A 4-qubit state of purity ~ 0.95 was used to generate this data. The key point is that our lower bound increases with m.

Ongoing research: Finding optimal measurement